PCB TMDL Monitoring of Point Source Discharges

Mark Richards
PCB TMDL Monitoring Guidance
TAC
March 29, 2007

Discussion Overview

PCB Primer

Sample Collection

Options

PCB Analysis

- QA/QC
- Interpreting Results
 - Decision Rules
- Effluent Results

What are PCBs?

- Biphenyl molecule with 1-10 chlorine atoms
- Homologs (grouping based on # chlorines)
- 209 distinct PCB Compounds (Congeners)
- Total PCB (tPCB) = Summation of 209
 Congeners (Basis for VA WQS)
- Aroclors mixture of congeners
 - Aroclor 1260 is 60% chlorine

PCB Characteristics

- Most stable organic compounds known
- Very hydrophobic attach to organic particles in soil and sediment
- Lipophilic accumulate in the fatty tissues
- Volatilize to Atmosphere
- Listed as probable carcinogen

PCB Homolog Distribution

TMDL Challenge - PCB Impaired Waterbodies -

- TMDL Development (WLA)
- Lack PCB effluent data for loadings
 - -EPA Method 608 (Permit method)
 - Deficiency requires assumptions
 - Options
 - No data = no load?
 - Use assumptions (QL, DL)

or

Generate low level PCB data

Estimate PCB Loadings

Generate PCB Data for Loadings

- Preferred alternative -
- Need: Develop PS PCB loadings
- Goal: PCB Data Generation
 - Ensure quality, representative and comparable
 - e.g. Number of PCB congeners analyzed
 - Utilize appropriate sampling and analytical procedures

PCB Effluent Sampling

- Which sampling method will yield the best data?
- For high volume discharges, will a 24h composite sample address effluent variability?
- Wet vs. Dry?

PCB Sampling Objective

- Ensure high quality PCB data generated
 - Follow effluent sampling protocol (clean technique)
 - Low level analysis (pg/L)
 - Use same analytical method (1668A)
- Based on the Delaware River Basin (DRBC) procedures
 - http://www.state.nj.us/drbc/toxics_info.htm

PCB Sampling Objective

- Eliminate (or minimize) potential for external contamination
- Sampling options:
 - -24h Composite samples
 - -Grab sample(s)
 - Semi-Permeable Membrane Device (SPMD)

Option 1

24h Composite Samples

- Traditional approach (permits)
- DRBC approach
- Used by Potomac River Point Source dischargers (TMDL)
- Clean technique
- Two (2) Liter samples

24h composites (continued)

- Advantages
 - -Hourly aliquot captures variability
- Disadvantages
 - Extensive protocol for clean-up and collection
 - Potential for equipment contamination
 - Additional cost for equipment, sampling, and analysis (rinsate blanks)

Option 2

Grab Samples

- Collect 1 or more instantaneous samples
 - Address effluent variability by collecting samples at a pre-determined frequency (e.g. 4, 6, or 8 hour intervals)
 - Composite aliquots (in laboratory) for analysis

Grab samples (continued)

- Advantages
 - No specialized personnel/training (clean technique required for grabs)
 - Minimize equipment needs and pre sample collection clean-up
 - Reduced cost (less samples)
 - Minimize extraneous contamination
- Disadvantages
 - May miss spikes

Option 3

SPMDs

- Semi-Permeable membrane Device (SPMD)
- USGS
- Comprised of lipid material
- Sequesters dissolved (bioavailable) PCBs from effluent
- Deployed 30 days
- tPCB concentration estimated

"Virtual Fish"

Building a SPMD

Semipermeable
membrane (1 of
3) consist of
lipid bags

Sampling w/SPMDs

(continued)

- Obtain from Environmental Sampling Technologies (EST Labs), St. Joseph, MO
 - http://www.est-lab.com
- Service Provided by EST
 - Purchase (3) 1 mL Triolein SPMDs
 - Post deployment clean-up and extraction (placed in ampoule)
- Extract sent to analytical lab (1668A)
- Results converted to water conc.

Sampling w/SPMDs

(continued)

Advantages

Integrates bioavail. PCBs over exposure period

Disadvantages

- Dissolved PCB Fraction (excludes particulate)
- Minimum water depth requirements
- Not for use in storm dominated outfalls (CSOs, MS4s)
- Estimated water concentration (tPCB)
- Expense

PCB Analytical Method

- EPA Method 1668, Revision A
 - High Res GC/ High Res MS
 - Reporting Level (8-11 pg/L) on a congener basis (0.000011 μg/L)
 - Analyzes 209 Congeners
- In use
 - Potomac and Roanoke/Staunton RiverTMDLs

QA/QC

- Qualified Laboratories ability to perform method
- Adhere to 1668A QC requirements
 - Method Blanks
 - Spike Recoveries (¹³C labeled Congeners)
 - IPR/OPR (Initial/On-going Performance & Recovery)
- Rinsate Blanks (for 24h composite samples)

Projected Costs

- Laboratories (list will be available)
- Sample Collection (24h composites)
 - Clean technique (cost ?)
- Method 1668A Cost
 - -\$700 \$1,200 per sample
 - Greater number of samples < \$\$</p>
- SPMD (estimated)
 - \$450-\$500 per SPMD
 - Includes clean-up and extraction
 - Plus Cost of Analysis

Additional Parameters

- TOC, POC, DOC, TSS
- Important relative to environmental fate of PCBs
 - Used for TMDL Model
- Collection recommended concurrent with PCBs
- Analyze using an approved method

Data Acceptability & Interpretation

- Meet method QC requirements
- Large number of PCB compounds (209) comprise tPCB
 - look at individually and as a summed total
- Decision Rules developed by DRBC
- Alternate approach used for the Potomac TMDL

DRBC Decision Rules

G. Cavallo, et al, Data Management in Support of TMDL Efforts

Data Interpretation - Alternate Approach

- Statistical based approach
- Utilized for the Potomac River Point Source PCB data
- Consisted of blank correcting data
 - Eliminated background contribution

Effluent Results - Potomac River Pt. Sources (TMDL)

tPCB Results

- 1668A Compared w/SPMD -
- Data from single facility
- Method 1668A Results
 - -Blank Adj. tPCB = 431 pg/L (ave.)
 - -(n) = 6; combined grabs & composites
- Semi-permeable membrane device (SPMD)
 - -tPCB = 391 pg/L

Conclusion

- PCB WLAs are required
- PCB data generated with this approach preferred
- TAC
 - Review methods and processes
 - Advise on technical issues

No PCB Data = Assumptions

QUESTIONS?

Mark Richards marichards@deq.virginia.gov

Extra Slides

Method Blanks –Potomac R. Approach

- Eliminated background contamination
 - -95% false positives
- Statistical approach (Cited in method 1668A)
 - -MB data set $(n \ge 10)$
- Mean +(2 Std. dev.) calc. for ea. congener
- Effluent adjusted <u>only</u> if MB contam.
 present in associated blank

